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HIGHLIGHT

e We study tree cover and mortality using Australian area-level data from 2015 to 2020.
o One standard deviation more tree cover is associated with 0.1 SD fewer deaths.

o The relationship between tree cover and health holds for most major causes of death.
o The association between tree cover and health is larger for men than women.

o Value of life estimates suggest the mortality benefit of trees exceeds planting costs.

ARTICLE INFO ABSTRACT

Keywords: Are trees good for your health? Using detailed satellite imagery, we estimate the extent of tree coverage at a fine
Morta}li'ty neighborhood level across urban Australia. We then look at the neighborhood-level association between tree
Morbidity canopy cover and mortality. Holding constant socioeconomic status, we find evidence of a strong beneficial
Health . . . . . . S
relationship. Neighborhoods with more trees have lower levels of mortality, with a 10 percentage point increase
Tree canopy cover . s . . . . .
Forests in tree cover (about one standard deviation) associated with a reduction in mortality of 11 deaths per 100,000
Nature people (about one eighth of a standard deviation). This association holds for most major causes of death, and is

larger for men than for women. Health morbidity is better in areas with more trees, although this relationship is
not statistically significant. Analysis of sub-samples does not support the critique that our results are merely
driven by short-term selection effects in which healthier people move to tree-lined suburbs. Using standard
estimates of the value of a statistical life, the mortality benefit of additional trees substantially exceeds the cost of
planting and maintenance. Our findings support the protection and restoration of tree canopy in urban neigh-
borhoods as a means of promoting public health and reducing health inequalities.

1. Introduction

Cities differ dramatically in the extent of their tree canopy cover.
While some of this variation can be explained by soil quality and cli-
matic factors, differences also depend on how planners and policy
makers prioritize the inclusion and availability of green space to city
dwellers. Once considered an exclusive amenity for the wealthy, parks
and open spaces are now recognized as critical infrastructure to be
accessed by all city dwellers (Zhao et al., 2023). This includes the urban
tree canopy.

There are a range of ways that trees may affect cities and their res-
idents (Roy, Byrne and Pickering, 2012; Pearlmutter et al., 2017). Trees
can make a city more beautiful. Their foliage and form can enhance the
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aesthetic value of neighborhoods in ways that provide pleasant spaces
for recreation. Trees reduce environmental harm by absorbing storm-
water, filtering pollutants and sequestering carbon. However, trees can
also cause harm. They can block sunlight, damage footpaths, and drop
limbs in storms. In public areas, planting and maintaining trees places
pressure on stretched government budgets.

The accessibility of the urban forest can impact the health of com-
munities (Wolf et al., 2020). Tree-lined streets can create more enjoy-
able places for physical activity that may improve longevity (Knobel
et al., 2021). By providing shelter from the sun, trees may also amelio-
rate the health impact of extreme heat. These characteristics are most
often found in more affluent communities, epitomized by the phrase
‘leafy neighborhood’. If trees improve health, then improving tree

E-mail addresses: gweneth.leigh@canberra.edu.au (G. Leigh), andrew.leigh.mp@aph.gov.au (A. Leigh).

https://doi.org/10.1016/j.landurbplan.2023.104947

Received 12 December 2022; Received in revised form 24 October 2023; Accepted 27 October 2023

Available online 2 November 2023
0169-2046/© 2023 Elsevier B.V. All rights reserved.


mailto:gweneth.leigh@canberra.edu.au
mailto:andrew.leigh.mp@aph.gov.au
www.sciencedirect.com/science/journal/01692046
https://www.elsevier.com/locate/landurbplan
https://doi.org/10.1016/j.landurbplan.2023.104947
https://doi.org/10.1016/j.landurbplan.2023.104947
https://doi.org/10.1016/j.landurbplan.2023.104947

G. Leigh and A. Leigh

coverage in disadvantaged areas may also help reduce life expectancy
gaps across socioeconomic groups (Mitchell et al., 2015). Understanding
this relationship between foliage and human health therefore has im-
mediate implications for policymakers.

Our study builds on the existing literature by exploring whether
urban tree canopy is related to neighborhood mortality. We do this by
analyzing detailed tree data from Australia, an advanced nation with a
temperate climate that is conducive to outdoor activities. Using new
data on tree coverage, we precisely estimate the share of a given
neighborhood that is covered by trees, and then match this to existing
neighborhood-level data on mortality and socioeconomic characteris-
tics. This allows us to regress mortality on tree cover and socioeconomic
characteristics, which provides an estimate of the neighborhood-level
association between tree canopy cover and mortality, holding constant
the socioeconomic mix of the local community.

The remainder of our paper is structured as follows. In Section 2, we
outline the theoretical pathways through which tree cover might affect
population health, and summarize the existing evidence. In Section 3,
we discuss our data and methodology. Section 4 presents and discusses
our findings and robustness checks. Section 5 discusses how the
magnitude of our estimates compares with those in the literature, and
compares the costs of tree planting to the mortality benefits. The final
section concludes.

2. Background

Multiple studies find a positive association between urban green-
space and health outcomes (Hartig, 2021, Markevych, 2017). Exposure
to greenspaces have been associated with a reduced risk of high blood
pressure (Tamosiunas et al., 2014), being overweight (Knobel et al.,
2021) or having Type 2 diabetes (Mazumdar et al., 2021) — all risk
factors linked to cardiovascular disease, the leading cause of mortality
worldwide (Nowbar et al., 2019).

The relationship between greenspace and health is not uniformly
positive. In the case of air pollution, trees have a beneficial impact by
absorbing pollutants, but may also have a detrimental effect by emitting
allergenic pollens and reducing the dispersion of car exhaust. A review
of the literature finds that the relationship between urban vegetation, air
quality and asthma is inconclusive (Eisenman et al., 2019). However,
the net effect of greenspace on health appears to be positive. In a meta-
analysis, Rojas-Rueda et al. (2019) found the risk of all-cause mortality
was significantly lower with increased exposure to residential
greenspace.

Some studies have sought to differentiate between trees and green-
space more broadly. Astell-Burt and Feng (2019a) found that tree can-
opy was associated with lower rates of diabetes, hypertension and
cardiovascular disease, while total greenspace was associated with
lower rates of diabetes only. Similarly, Reid et al. (2017) found signifi-
cantly higher rates of self-reported health among those living near high
tree cover, but no association between self-reported health and grass
cover. A systematic review reaches a similar conclusion: the relationship
between tree canopy and health does not appear to hold for grasslands
and health (Nguyen et al., 2021).

In a scoping review looking at the relationship between urban trees
and human health by Wolf et al (2020), the preponderance of evidence
points to a negative relationship between trees and unhealthy factors
including excess heat, air pollution, ultraviolet radiation, and crime.
One of the factors that has been most carefully studied is the urban heat
island effect, where higher temperatures lead to heat related fatalities,
particularly in those with cardiovascular disease or respiratory illness
(Basu, 2009; Brown et al., 2018). Temperatures tend to be lower in areas
with trees, with a meta-analysis estimating that daytime temperatures in
urban parks are around 1°C cooler than in the surrounding streets
(Bowler et al., 2010).

Focusing on Australia, a series of recent papers have identified re-
lationships between greenspace and mental health (Astell-Burt and Feng
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2019b), cardiovascular health (Astell-Burt et al. 2021), sleep (Astell-
Burt and Feng 2020a), dementia (Astell-Burt, Navakatikyan and Feng
2020), memory (Astell-Burt and Feng 2020b), loneliness (Astell-Burt
et al. 2022) and physical activity (Feng, Toms and Astell-Burt 2021). A
systematic review finds that most of those studies which disaggregate
effects by gender have found that greenspace has a stronger protective
effect for women than men (Sillman et al. 2022).

Other studies have explored the equity implications the relationship
between greenspace and health. Studies have shown that low-income
areas have lower rates of vegetation and higher temperatures,
exposing residents to a larger mortality burden (Kondo et al., 2020;
Schwarz et al., 2015). Growing scientific evidence suggests that green-
space serves an important preventative health measure within urban
environments that could also help reduce the health gap between rich
and poor people (Kondo et al., 2020; Mitchell et al., 2015; Wolch et al.,
2014).

Although most of the foregoing literature is cross-sectional (Wolf
et al., 2020), several papers have used experiments or natural experi-
ments to measure the relationship between trees and health. A system-
atic review of multiple randomized experiments concluded that
treatment groups who walked in nature (‘forest bathing’) had better
mental wellbeing than control groups who walked in urban areas
(Kotera, Richardson and Sheffield, 2022).

In a natural experiment, Donovan et al. (2013) studied the impact of
the emerald ash borer, an invasive forest pest that caused the loss of 100
million trees across the United States. In counties where trees were lost,
deaths from cardiovascular and lower-respiratory-tract illness rose. Like
the randomized trials of forest bathing, the natural experiment approach
addresses one of the potentially confounding factors in this literature: if
healthier people choose to live in neighborhoods with more trees, then
the association between tree coverage and health may not reflect the
causal impact of trees on health.

Our research builds on this prior literature in three ways. First, we
present evidence on the most important health outcome: mortality.
Although we recognize the interest in studying proximate health out-
comes (and indeed, our study also looks at obesity and inactivity),
longevity is of central importance to health researchers. Focusing on
mortality also makes it possible to use estimates of the value of a sta-
tistical life to carry out a cost-benefit analysis of additional tree plant-
ings. Second, while some research on tree cover and health has used
small and potentially unrepresentative samples (such as a single city),
our analysis uses all available data from Australia, a geographically
large country whose neighborhoods exhibit considerable variation in
tree cover. Third, we address the issue of neighborhood sorting through
a robustness check in which we re-analyze the relationship between tree
cover and mortality, progressively excluding the areas with the highest
levels of population mobility.

3. Methodology
3.1. Tree coverage data

Historically, the main limitation on large-scale studies of tree cover
has been the low resolution of satellite imagery and aerial photography
(see eg. Smith et al., 2010; Browning and Locke, 2020). Using imagery
with large pixel sizes (eg. 30 m) makes it difficult to ascertain the true
extent of tree cover in an area. When coding such imagery, it is difficult
to distinguish between trees and other features, such as agricultural
fields, or buildings with green painted roofs.

After reviewing all available tree datasets in Australia, we opted to
purchase a proprietary dataset compiled by Geoscape Australia, a pro-
vider of national location data. Geoscape tree coverage data is generated
from a pixel-level analysis of tree coverage derived from satellite im-
agery taken in June 2020 (Geoscape, 2020). The Geoscape data was
chosen in preference to other alternatives such as the National Vegeta-
tion Information System dataset due to the high resolution. For example,
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the Geoscape data has a pixel size of 2 m by 2 m, while National
Vegetation Information System dataset has a pixel size of 100 m by 100
m. If the typical urban tree has a canopy of 10 m diameter, it will be
captured by the Geoscape data, but missed by the National Vegetation
Information System data unless it is surrounded by other trees.

The Geoscape source imagery identifies for each pixel whether or not
tree cover is present. Within each neighborhood, we then count the
number of pixels with tree cover and divide this by the total number of
pixels to estimate the percentage of tree cover. To calculate the per-
centage tree cover by census area using the Geoscape tree cover dataset
(version 1.6), we followed these steps, using ESRI ArcGIS Pro and the
open source QGIS desktop software:

1. Append all tree cover raster data to a single dataset in GDA2020 GA
LCC projection.

Sydney

Brisbane
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2. Convert pixel values to either 1 (trees present in pixel) or 0 (no trees
present in pixel). The source data also includes tree height per pixel,
but we do not use this information.

3. Determine which SA1 areas are fully covered by the Geoscape tree
data.

4. Analyze tree cover data for SA1 areas which are fully covered by the
Geoscape tree data.

5. Calculate percentage tree cover for each SA1 area as the sum of pixel
values with tree cover divided by the total number of pixels.

To follow these steps in the two software programs requires the
graphical interface, rather than code. Screenshots of the relevant
graphical interface choices are available to anyone having difficulty in
replicating our work based on the description above.

Fig. 1 provides a sample of the data, depicting tree canopy coverage
in Australia’s four most populous cities: Sydney, Melbourne, Brisbane
and Perth.

Melbourne

Perth

Note: Boundaries are at the Australian Bureau of Statistics Statistical Area 3 level. Legend
shows tree cover range (eg. ‘0.26,0.45° denotes tree cover ranging from 26 percent to 45

percent).

Fig. 1. Tree Canopy Coverage in Four Australian Cities. Note: Boundaries are at the Australian Bureau of Statistics Statistical Area 3 level. Legend shows tree cover

range (eg. ‘0.26,0.45' denotes tree cover ranging from 26 percent to 45 percent).
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Our tree cover data are based on imagery that focuses on urban areas
with a population of 200 or more people. The tree cover dataset covers
less than 1 percent of the total land area of Australia (we estimate the
total Geoscape tree data dataset coverage as 51,109 km?, and the Geo-
scape tree data coverage of areas fully within an SA1 boundary as
22,739 kmz, while according to the website of Geoscience Australia, the
total land area of Australia including islands is 7,688,287 km?). How-
ever, the dataset provides us with accurate tree coverage for 90 percent
of the Australian population (based on the 2016 Census, 20,964,733
people were in an SAl area for which we were able to calculate tree
coverage using the Geoscape dataset, out of a total of 23,401,461 people
covered by the 2016 Census and assigned to an SA1 area).

For the purposes of our analysis, we aggregate tree canopy coverage
data to the same level as the available mortality and morbidity statistics.
For mortality statistics, data are only available at an SA3 level, so we
aggregate tree coverage to that level, averaging across SAls on a
population-weighted basis. For morbidity statistics, data are only
available at a PHN level, so we aggregate tree coverage to that level,
averaging across SAls on a population-weighted basis.

Those areas for which we do not have tree coverage data tend to have
lower rents, lower incomes, lower levels of education, lower shares of
people who do not speak English at home, and higher shares of Indig-
enous people. This is consistent with these omitted areas being more
disadvantaged, remote communities.

Our data correlate closely with other studies of tree coverage. For
example, the Australian Capital Territory Government used LiDAR
remote sensing to estimate urban tree canopy cover at a suburb level
(ACT Government, 2021). To compare our data against this source, we
aggregated our tree coverage estimates to a suburb level. Across 94 ACT
suburbs for which tree cover estimates exist in both datasets, the average
tree cover is higher in the ACT Government data (25 percent) than in our
dataset (14 percent). However, the two datasets closely correspond in
terms of which suburbs have more tree coverage. Across suburbs, the
correlation between the ACT government’s estimates and ours is 0.9.
This provides us with some reassurance as to the accuracy of our tree
coverage estimates.

3.2. Health data and socioeconomic controls

The main health measures we use are mortality figures from the
Mortality Over Regions and Time (MORT) books. These aggregate
deaths over a five-year period, 2015-2019, and at the geographic level
of a Statistical Area 3 (SA3). SA3 units are an aggregate of SA1 units, and
generally have a population of between 30,000 and 130,000 people. In
major cities, SA3 areas represent the areas served by a major commercial
or transport hub. In regional areas, SA3s cover the areas served by
regional cities with a population of 20,000 or more, often aligning to
Local Government Areas. The MORT books cover the full universe of
deaths, and are based on the Cause of Death Unit Record File data,
maintained by the Australian Institute of Health and Welfare (ATHW) in
the National Mortality Database.

Mortality figures are represented as annual deaths per 100,000
people. Naturally, areas with a higher average age tend to have higher
mortality rates, so all mortality figures are adjusted to account for the
age structure in the local area (Kleinman 1977). In effect, this converts
the local area mortality rate to what it would be if its age structure
matched that of the full Australian population at a common point in time
(by convention, the Australian Bureau of Statistics uses the national age
structure in 2001). Where m; is the mortality rate for age group i and W;
is that age group’s population share in 2001, the age-adjusted mortality
rate is equal to > m;W;/ > W;. In addition to all-cause mortality, we
present age-adjusted mortality rates from some of the most common
causes of death, including cancer, heart conditions, kidney failure and
suicide.

For the purposes of our analysis, it is necessary to make some minor
adjustments to the causes of death dataset. The MORT books show, for
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each SA3 region, the number of deaths that occurred in the period
2015-2019. Figures are presented for each of the top 20 causes of death
on a national level. Where a cause of death is one of the top 20 causes for
a particular SA3, the ATHW data shows the age-adjusted mortality rate.
For example, the age-adjusted rate of death for coronary heart disease is
shown for every SA3, since it is always one of the top 20 causes of death
in each region. However, where a cause of death is not one of the top 20
causes of death in a region, the AIHW dataset shows the number of
deaths, but not the age-adjusted rate. For example, we know the number
of deaths due to accidental falls in all SA3 areas, but in some cases the
AIHW does not report the age-adjusted rate of death due to accidental
falls.

To account for this, we therefore estimate the mean age-adjusted
population denominator for all reported deaths (we calculate this
figure for each SA3 and cause of death, and then average it across the
SA3, weighting by the number of deaths in each cause). We use this age-
adjusted population denominator to estimate the age-adjusted death
rate where it is not reported. Note that this will necessarily be imprecise,
since the age profile differs across causes of death. However, the
advantage of this approach is that it allows us to compare causes of
death across all SA3 areas, without needing to contend with issues of
sample selection. In general, our results are not particularly sensitive to
excluding cases where we cannot precisely calculate the age-adjusted
mortality rate for particular causes of death. There are a handful of
SA3 areas for which the AIHW data report all-cause mortality for per-
sons, but do not provide a breakdown by gender or cause of death. Since
these are a tiny fraction of the total sample, we drop them in the interests
of comparability.

For ease of exposition, we do not present results for the top 20 causes
of death. Instead, we aggregate mortality statistics, following the In-
ternational Statistical Classification of Diseases and Related Health
Problems 10th revision (ICD-10). We create a category of major cancers,
which is the sum of deaths due to Lung cancer (C33, C34), Colorectal
cancer (C18-C20, C26.0), Prostate cancer (C61), Breast cancer (C50),
Pancreatic cancer (C25), Cancer of unknown or ill-defined primary site
(C26, €39, C76-C80 excl. C26.0), and Liver cancer (C22), which are all
classified as ‘Neoplasms’, ICD-10 codes C00-D48. We also create a
category of heart conditions, which is the sum of deaths due to Coronary
heart disease (120-125), Cerebrovascular disease (160-169), Heart failure
and complications and ill-defined heart disease (I50-151), Cardiac ar-
rhythmias (I147-149), and Hypertensive disease (110-115), which are all
classified as ‘Diseases of the circulatory system’, ICD-10 codes 100-199.
This reduces the 20 top causes of death in Australia to 10 major causes.

To shed further light on our mortality results, we explore how tree
cover relates to three health measures: overweight, exercise and blood
pressure. To this end, we use data collected in the 2017-18 National
Health Survey, a survey conducted by the Australian Bureau of Statistics
covering approximately 21,300 people in 16,400 private dwellings
across Australia. Although the National Health Survey excludes Very
Remote areas of Australia and discrete Aboriginal and Torres Strait
Islander communities, this makes little difference to our analysis, since
our tree data covers urban areas. National Health Survey data are
available only at the level of the Primary Health Network (PHN). PHNs
connect health services across a specific geographic area, as defined by
the Australian Government Department of Health. There are 31 PHNs,
covering the entirety of Australia.

Unlike tree cover data and mortality data, measures from the Na-
tional Health Survey are affected by sampling error. The specific mea-
sures we use are:

e The proportion of adults with high blood pressure. High blood
pressure is defined as the share of people with a systolic reading of
140 or higher and/or a diastolic reading of 90 or above, plus people
who reported they were taking hypertension medication (regardless
of their blood pressure reading).
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e The share of people who are overweight or obese. Overweight is
defined as a body mass index of 25 or above, while obesity is defined
as a body mass index of 30 or above.

o The percentage of people who do not meet the recommended
physical activity guidelines. Respondents aged 18 to 64 met the
physical activity guidelines if they completed 150 min of physical
activity (where vigorous activity is multiplied by 2) on 5 days or
more in the prior week. Respondents aged 65 over met the guidelines
if they completed 30 min or more of physical activity on at least 5
days in the last week. Physical activity includes exercise at work,
walking for fitness, recreation, or sport; walking to get to or from
places; moderate exercise; and vigorous exercise recorded in the
week prior to interview.

As with mortality data, each of these health measures is age-
standardized to the Australian population. These are all risk factors, so
the interpretation of their coefficients is the same as that for mortality,
with negative coefficients representing lower risk levels (and therefore
better population health).

What controls should be included? Ideally, our regression specifi-
cation should hold constant baseline socioeconomic differences. By
doing so, we are effectively comparing health outcomes in areas with
similar levels of affluence, racial diversity and education. These socio-
economic variables are not pathways through which greenspace affects
health, and they may confound the relationship between tree cover and
health if they are correlated with both metrics. For example, if richer
areas have more trees and better health, then failing to include a control
for affluence could lead to us mistakenly concluding that trees affect
health, when in fact both are driven by affluence.

However, we deliberately do not include control variables that may
capture the pathways through which trees could affect health. As
Wooldridge (2013, 205-206) points out, including additional variables
in an attempt to maximize the goodness-of-fit (Rz) can lead to the
problem of overcontrolling. Overcontrolling occurs when the researcher
controls for the mechanisms through which the key independent vari-
able affects the dependent variable. For example, if trees improve the air
quality, noise levels or temperature in local neighborhoods, then con-
trolling for these variables would capture part of the causal effect of
trees on health. Mistakenly including an air quality, noise level or
temperature control would then us to underestimate the true impact of
trees on health. The same is true of controlling for health behaviors. For
example, if trees cause people spend more time outdoors or with friends,
then controlling for outdoor time or socializing would lead us to un-
derestimate the true impact of trees on health. Admittedly, data con-
straints make this a hypothetical point in some cases. Since our analysis
requires finely disaggregated geographic data across Australia, detailed
data on some of these metrics would not be available, even if we wished
to include them.

Our socioeconomic controls are drawn from the 2016 Census, which
provides precise neighborhood-level measures across the nation. We
include five socioeconomic controls: median rent, median household
income, the share of the population who have a year 12 education, the
share of the population who are Indigenous, and the share of the pop-
ulation who speak a language other than English at home. We include
rent as a proxy for housing wealth, since the Census does not include
home values, and rent is more closely related to housing values than
average mortgage repayments (which vary significantly with the timing
of house purchase). In our analysis (though not in the summary statistics
table) the rent and income variables are logged, reflecting the fact that
we expect health to be affected by a given percentage change in rents
and incomes, not a given dollar change. The other variables are shares,
which range from zero to one. Table 1 presents population-weighted
summary statistics.

Note: All summary statistics are population-weighted.
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Table 1
Summary Statistics.
Mean Standard deviation

Tree cover 0.139 0.082
Mortality per 100,000 people
All deaths 539.393 90.128
Cancer 96.195 16.687
Heart conditions 117.022 22.415
Dementia 40.919 13.545
Chronic obstructive pulmonary disease 25.03 10.347
Diabetes 16.677 8.706
Influenza/Pneumonia 10.739 3.925
Kidney failure 6.847 2.763
Liver disease 7.102 3.058
Suicide 13.542 4.996
Accidental falls 8.616 3.712
Morbidity measures
High blood pressure 0.318 0.032
Overweight or obese 0.671 0.045
Did not meet physical activity guidelines 0.543 0.049
Socioeconomic controls
Median weekly rent ($A) 353.853 105.803
Median household income ($A) 1553.459 424.85
Share who have completed high school 0.407 0.123
Share Indigenous 0.034 0.047
Share speaking a language other than English 0.173 0.155

3.3. Regression specification

Our regression specifications take the form:

H; = aT;+ pX; +¢ )

where H is a health outcome in geographic area j, T is the share of that
area covered in trees, X represents a vector of socioeconomic controls, €
is a normally distributed error term, and o and p are coefficients.

Since mortality only varies at the SA3 level, we average tree coverage
and socioeconomic controls to that level. Likewise, because morbidity
only varies at the PHN level, we average tree coverage and socioeco-
nomic controls to that level. Results are qualitatively similar if we run
the regressions at the SA1 level but cluster our standard errors at the SA3
level (as per Abadie et al. 2023). All regressions are population
weighted.

4. Results
4.1. Graphing simple bivariate relationships

Before presenting regression results, it is useful to observe the simple
bivariate relationships between tree cover, affluence and mortality. We
begin in Figs. 2 and 3 by plotting average tree cover against median
weekly rent and median weekly household income, with each dot rep-
resenting a local neighborhood. In each chart, we show the line of best
fit, weighted by the population in each neighborhood.

In both figures, there is an upwards slope. Areas with weekly rent
around A$300 had on average about 10 percent tree cover, while areas
with weekly rent around A$500 had approximately 40 percent tree
cover. Likewise, areas with weekly household income around A$1500
had on average about 10 percent tree cover, while areas with weekly
incomes around A$2000 had approximately 40 percent tree cover.

In Fig. 4, we plot the bivariate relationship between mortality and
tree cover, showing on the vertical axis the number of deaths for every
100,000 people. We observe a strong negative relationship between
mortality and tree cover, with the number of age-adjusted deaths
averaging around 500 per 100,000 people in areas with 10 percent tree
cover, but falling to almost 400 in areas with over 40 percent tree cover.

In Fig. 5, we show the bivariate association between overweight and
tree cover. Since we only observe overweight data at a PHN level, we
average tree cover to that level. At this higher level of aggregation, the
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Fig. 2. Median Rent and Tree Cover.
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Fig. 3. Median Income and Tree Cover.

range of tree cover falls, with the highest rate being 29 percent. We
observe that in areas with 10 percent tree cover, age-adjusted rates of
overweight and obesity average around 70 percent, while in areas with
20 percent tree cover, overweight and obesity averages around 65
percent.

It is difficult, however, to discern from these scatterplots the extent to
which the positive relationship between health and tree cover is merely
an artefact of the positive relationship between affluence and tree cover.
To discern this, it is necessary to regress health outcomes on tree cover,
holding constant measures of socioeconomic status.

4.2. Mortality regression results

Table 2 shows regression results for mortality, beginning with all-
cause mortality, and then analyzing particular causes of death.

Controlling for socioeconomic status, the coefficient on all deaths is
—110, which is statistically significant at the 5 percent level. This im-
plies that a 10 percentage point increase in tree cover (approximately
one standard deviation) reduces the annual mortality rate by 11 deaths
per 100,000 people. Across ten causes of death, the coefficients are
negative and statistically significant at the 1 percent level for influenza/
pneumonia, kidney failure, liver disease, and accidental falls; at the 5
percent level for suicide, and at the 10 percent level for diabetes. It is
worth noting that these six causes of death include both communicable
and non-communicable conditions.

The other control variables in Table 2 largely take the expected sign.
As Figs. 2 and 3 show, both rent and income are negatively related to
overall mortality, but the relationship is stronger for rent than income.
When both are included in the regression, the coefficient on rent remains
negative and significant, while the coefficient on income is negative but
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Fig. 5. Overweight and Tree Cover.

statistically insignificant. In the overall deaths specification, the log rent
coefficient is —61, indicating that a 10 percent increase in rent prices is
associated with 6 fewer deaths per 100,000 people.

Reflecting the established association between education and health,
the schooling coefficient of —171 suggests that a 10 percentage point
increase in the share of people who have completed high school is
associated with 17 fewer deaths per 100,000 people. Education is
negatively related to most of the specific causes of death.

The Indigenous coefficient is 782, suggesting that a neighborhood
with only Indigenous people would have a death rate that was 782
deaths per 100,000 higher than a neighborhood with no Indigenous
people. This is more than three times larger than the racial Indigenous
gap (212 deaths per 100,000: ATHW 2020), indicating that in areas with
a larger share of Indigenous people, non-Indigenous residents also have
higher rates of mortality. The Indigenous share is positively related to
mortality across specific causes of death (except accidental falls), and is
statistically significant in most instances.

The share of people in an area who speak a language other than

English at home does not have a consistent relationship with mortality,
either for all-cause mortality or for particular causes of death. Finally,
the R? indicates that our model explains around 62 percent of variation
in overall mortality across areas. In regressions where the dependent
variable is a specific cause of death, the R? is lower. Taken together, tree
cover and socioeconomic status are strongly predictive of cancer,
chronic obstructive pulmonary disease, diabetes and suicide, but explain
little of the regional variation in dementia and influenza/pneumonia.

4.3. Mortality effects by sex

Since neighborhood-level mortality statistics are available by sex, we
run the analysis separately for male mortality and female mortality,
reporting the results in Table 3. We find that tree cover has seven times
as large an impact on reducing male mortality as on reducing female
mortality. The coefficients are —-209 for men and -30 for women,
implying that a 10 percentage point increase in tree cover reduces the
annual mortality rate by 21 men per 100,000, but only by 3 women per
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Liver Suicide Accidental

Influenza/ Kidney

Pneumonia

Diabetes

Chronic obstructive
pulmonary disease

Heart Dementia
conditions

Cancer

All deaths

Variable

Tree Cover and Mortality.

Table 2

falls

disease

failure

_5.946%** _6.743%* 13.836%+*

—6.745%%%

~14.200%+

—8.771*

—5.581
(5.598)
—10.178%***

8.913
(10.935)

—2.692
(14.311)
—13.851%*

—11.164
(9.180)
8.584+*

—109.638**

Tree cover

(2.639)
—3.970%**

(3.098)
—0.321
(1.219)
—1.476
(1.216)
0.155

(1.972)
—0.646
(0.776)
—-1.026
(0.774)
—0.290

(3.055) (2.028)

(4.734)
_5.058%#*

(46.012)
~60.543%+

—1.707**
(0.798)

0.238
(1.202)
—0.426
(1.199)

8.195+
(4.303)
—13.745%++

Log rent

(1.038)

—0.796

(1.036)
10.647%**

(1.863)
3.758*

(2.203)

(5.631)
—19.892%**

(3.612)
~15.087%**

(18.106)

—25.504

(18.057)
—170.637***

0.844
(0.796)

1.517
(2.197)
—23.629%**

Log household income

(1.858)
—11.141%**

(5.616) (4.291)

—24.084*

(3.602)
—65.835%**

—3.081

1.011

14.667

Share who have completed high

school

(2.691)
—28.171%**

(2.011) (3.159)
34.263***

31.708%***

(2.068)
10.121%**

(3.115)

(4.827)
110.017%***

(5.709)
72.337%**

(11.151)

(14.593)
129.965%***

(9.361)

117.995%**

(46.921)
782.085***

9.779*
(5.599)

19.369
(20.042)

Share Indigenous

(4.836)
—2.975*

(5.678)
—13.479%+*

(3.615)

(3.717)

(8.677)
15.990%++

(10.261)

(16.825) (26.229)

(84.333)
12.810

3.043%* 0.198

-1.776

1.401

0.448

9.367

3.802

Share speaking a language other

than English

(1.585)
0.254

(1.861)

0.433

(1.185)
0.386

(1.218)

(1.835)

(2.844)

(3.363)

(6.569)

(8.597)
0.406

(5.514)

(27.640)

0.108 0.205

328

0.565
328

0.570

328

0.040

0.557

0.618

R squared

328 328 328

328

328 328 328

328

Sample size

Note: *** ** and * denote statistical significance at the 1 %, 5 % and 10 % levels respectively. Standard errors in parentheses. All regressions are population-weighted.
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Table 3
Tree Cover and Mortality by Sex.
Men Women
Tree cover —209.480%*** —29.740
(58.639) (44.977)
Log rent —29.604 —87.616%**
(23.075) (17.699)
Log household income —80.810%** 25.209
(23.012) (17.651)
Share who have completed high school —165.384***  —151.067***
(59.797) (45.865)
Share Indigenous 926.347*%* 637.842%*
(107.477) (82.436)
Share speaking a language other than English —16.701 35.769
(35.225) (27.018)
R squared 0.579 0.537
Sample size 328 328
Test for equality of tree cover coefficients across ¥*(1 DF) = 18.91
male and female specifications (P < 0.001)

Note: , ** and * denote statistical significance at the 1 %, 5 % and 10 % levels
respectively. Standard errors in parentheses. All regressions are population-
weighted.

100,000. A Chi? test shows that the relationship between tree cover and
mortality differs significantly between men and women.

Our finding that the health benefits of greenspace are greater for men
contrasts with the bulk of the literature, which has tended to find that
the benefits are greater for women (Sillman et al., 2022). The available
data do not allow us to investigate the causal pathways more thor-
oughly, but we can speculate on possible explanations. Safety concerns
have been identified as a barrier in promoting access and use of urban
greenspace by women, reducing their likelihood to walk in local
neighborhoods compared to men (Ward Thompson et al., 2005). This
may help explain why additional tree canopy would benefit men
significantly more, as concerns around safety would make women more
reluctant to access urban open space regardless of canopy density and
extent. Further study around the relationship of greenspace and
women’s health is warranted, particularly if women are to experience
the full benefits of increased tree planting programs in urban areas.

4.4. Morbidity regression results

Table 4 analyses three morbidity metrics, drawn from the National

Table 4
Tree Cover and Morbidity.

Dependent Variable: High blood Overweight or Did not meet
pressure obese physical activity
guidelines
Tree cover —0.290 —0.080 —0.311
(0.221) (0.227) (0.408)
Log rent —0.010 —0.110 0.102
(0.078) (0.080) (0.143)
Log household income -0.119 —0.030 -0.129
(0.101) (0.104) (0.187)
Share who have 0.224 —0.054 —0.056
completed high
school
(0.228) (0.233) (0.420)
Share Indigenous 0.184 —0.120 0.371
(0.269) (0.276) (0.497)
Share speaking a —0.040 0.018 0.086
language other than
English
(0.091) (0.093) (0.167)
R squared 0.349 0.588 0.110
Sample size 31 31 31

Note: , ** and * denote statistical significance at the 1 %, 5 % and 10 % levels
respectively. Standard errors in parentheses. All regressions are population-
weighted.
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Health Survey. High blood pressure, overweight and failing to meet
exercise guidelines are all negatively related to tree cover, but not sta-
tistically significant at conventional levels. The coefficients suggests that
a 10 percentage point increase in tree cover is associated with a 2.9
percent drop in the share with high blood pressure, a 0.8 percent fall in
the share of people who are overweight or obese, and a 3.1 percent fall in
the share of people who fail to meet exercise guidelines.

The other controls in the morbidity regressions largely follow the
pattern of the mortality regressions reported in Table 2, but are not
statistically significant at conventional levels. This likely reflects the
high levels of aggregation in the morbidity analysis, which is done at a
Primary Health Network level (of which there are only 31 in Australia)
rather than at an SA3 level (of which there are over 300 in Australia).
Together, tree cover and our socioeconomic measures explain 35
percent of the area-level variation in high blood pressure, 59 percent of
the variation in obesity, and 11 percent of the variation in physical
activity.

4.5. Specification checks

Neighborhood-level analysis is inherently necessary when consid-
ering tree cover, since the theoretical pathways through which urban
trees affect human health — which fall into the categories of reducing
harm, restoring capacity and building capabilities (Markevych et al.,
2017) - all posit that it is the trees in a person’s neighborhood that
matter, not just the trees in their own backyard. Therefore, even if it
were technically possible to obtain household-level data on mortality
and morbidity, it would not be desirable to regress this on the tree cover
in that person’s backyard. When considering factors such as neighbor-
hood walkability, our interpretation of the literature suggests that tree
coverage in an area covering one’s nearest 400 neighbors is likely to
correspond to the local area that matters most to a person’s health.

Another concern is that the impacts of urban trees on health will
occur with some delay. Conditions such as diabetes, cancer and obesity
typically take years to manifest. To the extent that population mobility is
uncorrelated with health or tree coverage, migration between regions
with different levels of tree cover will attenuate our estimated effects. To
get some sense of the potential magnitude of this attenuation bias, the
share of Australians who make a long-distance move is around 3 percent
per year (Productivity Commission 2014, 104). This potential attenua-
tion should be borne in mind when interpreting our results. For example,
it is possible that our failure to find a significant negative relationship
between tree coverage and dementia contrasts with Astell-Burt, Nav-
akatikyan and Feng (2020) (who do find such a negative relationship)
because their study uses longitudinal data spanning an 11-year period,
while ours uses cross-sectional data.

A further consideration is whether our results are driven by spatial
autocorrelation. To test this, we apply a Moran test for spatial depen-
dence to the main specification (the first result shown in Table 2). This
test is unable to reject the hypothesis that the error terms are indepen-
dent and identically distributed. We therefore estimated a spatial
autoregressive model, which shows that the relationship between tree
cover and mortality is large and negative, as in the results of Table 2.
Because spatial autoregressive models do not accommodate weighting
(and therefore place the same weight on areas with low and high pop-
ulations), our preferred estimate remains that from the linear model.

An additional potential concern is that our results reflect sorting. For
argument’s sake, suppose that trees have zero impact on health, but
people who are already healthy (for lifestyle or genetic reasons) prefer to
live in neighborhoods with more trees. If healthier homebuyers are
willing to pay more for homes in leafy suburbs, then we will observe a
positive relationship between health and tree cover, even if no causal
effect exists.

To the extent that selection effects are driving our results, they
should lead the relationship between mortality and tree cover to be
largest in the areas with the highest level of mobility, since these will be
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the areas where healthy people are moving into tree-lined suburbs. To
test this, we identified for every neighborhood the share of the popu-
lation who did not live in the same house five years ago. We then rank all
neighborhoods according to the level of mobility, and re-run the first
regression specification shown in Table 2 (with the dependent variable
being all-cause mortality). We do this 81 times, each time dropping 1
percent of the sample until we are left with only the 20 percent of the
sample with the lowest level of mobility.

The results of this exercise are shown in Fig. 6. The line shows the
coefficient on tree cover, and the shaded area depicts the 95 percent
confidence interval. With 100 percent of the sample, the coefficient on
tree cover is -110, corresponding to the first specification shown in
Table 2. When the sample is restricted to the least mobile 75 percent of
the areas, the coefficient on tree cover is —98. With the least mobile 50
percent, the coefficient on tree cover is —87. As we move to the least
mobile 25 percent, the coefficient grows in magnitude to -122. Natu-
rally, the standard error increases as the sample shrinks (as reflected by
the widening of the shaded bars as we move to the right).

While the results of this exercise are not conclusive, they do provide
suggestive evidence that our results are not driven by selective mobility.
The line in Fig. 6 does not show a marked trend upwards or downwards,
suggesting that restricting the sample to less mobile neighborhoods does
not tangibly affect the relationship between tree cover and mortality.

5. Discussion

How do our results compare with estimates in the literature? Rojas-
Rueda et al. (2019) use the Normalized Difference Vegetation Index
(NDVI), a measure of vegetation density based on the difference be-
tween visible red and near-infrared surface reflectance in Land Remote-
Sensing Satellite (Landsat) imagery. To convert NDVI to urban tree
canopy (UTC), we use a formula set out in Kondo et al. (2020), which is
that NDVI = -0.03 + (0.51 x UTC®®). At our mean value of tree cover of
13.9 percent, a 10 percentage point increase in tree cover is equivalent
to a 0.06 increase in the NDVI. Our estimates suggest that a 0.06 increase
in NDVI would result in a mortality hazard rate of 0.980 [(539-11.0)/
539], and that a 0.1 increase in the NDVI results in a mortality hazard
rate of 0.966. By comparison, the nine studies summarized in Rojas-
Rueda et al. (2019) estimate a mean pooled mortality hazard ratio of
0.96 from a 0.1 increase in NDVI, with a 95 percent confidence interval
of 0.94 to 0.97. Thus our point estimate is quite close to the average of
the nine studies on greenspace and mortality summarized by Rojas-
Rueda et al. (2019). Note however that this is an imprecise comparison,
since the NDVI-to-UTC formula was not derived from Australian data,
and our comparison is with studies in a range of different international
contexts.

How should we think about the magnitudes in our study? Our central
result is that a 1 percentage point increase in tree cover reduces mor-
tality by 1.10 deaths per 100,000 people. Recall that in total, our
analysis covers 21 million people and an area of 20,000 square kilo-
meters. A 1 percentage point increase in tree cover would therefore
require an additional 200 square kilometers of trees, and would be
associated with around 230 fewer deaths.

One way to compare these figures is to carry out a cost-benefit
analysis. The cost of urban tree planting varies considerably, but one
estimate places the cost at between A$50 and A$100 per tree per year
(Moore 2021). If we assume that the typical urban tree has a canopy that
is 10 m in diameter, then 2.5 million trees have a combined canopy of
200 square kilometers (the number of trees is calculated as (200 x
1,000,000)/(% x 52)). This implies an annual cost of A$125 million to A
$250 million to increase tree canopy by 200 square kilometers.

To convert the mortality estimate to monetary terms, we use the
Australian Government’s estimate for the value of a statistical life,
which is A$5 million (Department of Prime Minister and Cabinet 2021).
Multiplying this figure by 230 lives per year, this suggests an annual
benefit of A$1.15 billion, which is more than four times larger than our
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Chart shows the results from re-estimating the regression shown in the first column of
Table 2, restricting the sample to lower mobility areas (eg. 20% specification restricts
the sample to the 20% of areas with the lowest mobility)

Fig. 6. Re-Estimating Mortality Regression in Areas with Progressively Lower Mobility.

upper estimate of the annual cost of planting and maintaining an addi-
tional 200 square kilometers of tree canopy. Note that our findings
consider only mortality, and do not take account of the fact that trees
also have positive benefits as carbon sinks, as well as improving the
quality of life of residents. Therefore, another way of regarding our
result is that it provides a preventive health lens to urban greening
strategies: if urban tree planting can be carried out at a reasonable cost,
it may be justified solely terms of the benefits of reduced mortality.

These results also show the potential risk of urban development that
replaces trees with buildings. To the extent that urban infill reduces total
tree coverage, it may adversely affect population health. From a health
perspective, a development that increases the residential density of an
existing block should be preferred to a development that converts a tree-
filled public park into an apartment complex.

Our findings also have equity implications. As Figs. 2 and 3 show,
tree cover is more prevalent in affluent neighborhoods. Given the health
benefits outlined above, establishing more equitable tree cover targets
within urban areas could help reduce the health gap between rich and
poor people. A tree planting program could in principle be focused on
neighborhoods with low tree canopy and high levels of chronic disease.

Using only aerial geospatial data to calculate canopy density does
present limitations. Since our data cover only 90 percent of the
Australian population, it is not perfectly nationally representative.
Another limitation is that we do not have data on the types of trees in a
neighborhood. Being able to distinguish tree species would allow us to
investigate whether different types of trees produce different health
effects. More detailed data would also allow us to contrast the health
benefits provided by tree canopy against the health impacts of other
vegetation types such as grass and understory. In future research, street-
level images could complement aerial imagery and provide a more
precise understanding of which types of greenspace have the greatest
impact on population health.

6. Conclusion

Analyzing high-quality tree cover data for Australia, we find a strong
association between the percentage of tree cover and the health of a

10

neighborhood, holding constant several socio-economic variables. This
relationship is strongest for mortality, with clear evidence that neigh-
borhoods with more trees have fewer deaths.

Focusing on specific causes of death, we find a significant negative
association between mortality and tree cover for six out of ten broad
causes of death: influenza/pneumonia, kidney failure, liver disease,
accidental falls (all at the 1 percent level), suicide (at the 5 percent
level), and diabetes (at the 10 percent level). This is consistent with prior
Australian studies showing that greenspace is associated with better
physical and mental health outcomes (eg. Astell-Burt and Feng, 2019b;
Astell-Burt et al., 2021; Astell-Burt and Feng, 2020a; Astell-Burt, Nav-
akatikyan and Feng, 2020).

Contrary to much of the literature (as reviewed in Sillman et al.,
2022), we find that the relationship between tree cover and mortality is
substantially larger for men than for women. Using data from the Na-
tional Health Survey, we also observe suggestive (but not statistically
significant) evidence of a negative association between measures of
morbidity and tree cover.

As a way of testing whether our findings might be driven by sample
selection, we re-analyze the data on neighborhoods where a lower share
of people have moved house in the previous five years. Our mortality
findings do not weaken when we restrict the sample to the neighbor-
hoods with the least population mobility, suggesting that the results may
not be driven entirely by sample selection.

Traditional economic approaches to planning and development
sometimes neglect to quantify the benefits of urban forest on city
livability. Our findings suggest that trees are associated with lower rates
of mortality. We also uncover key disparities, with trees tending to be
concentrated in advantaged areas, and the association between urban
tree cover and health being larger for men than for women. These
findings suggest the planning and management of the urban forest can
be one way to promote public health and reduce health inequalities.
Cities of the future should ensure all residents can harness the health
benefits of seeing the urban forest and its street trees.
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