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Leafy localities, longer lives: A cross-sectional and spatial analysis 
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H I G H L I G H T  

• We study tree cover and mortality using Australian area-level data from 2015 to 2020. 
• One standard deviation more tree cover is associated with 0.1 SD fewer deaths. 
• The relationship between tree cover and health holds for most major causes of death. 
• The association between tree cover and health is larger for men than women. 
• Value of life estimates suggest the mortality benefit of trees exceeds planting costs.  
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A B S T R A C T   

Are trees good for your health? Using detailed satellite imagery, we estimate the extent of tree coverage at a fine 
neighborhood level across urban Australia. We then look at the neighborhood-level association between tree 
canopy cover and mortality. Holding constant socioeconomic status, we find evidence of a strong beneficial 
relationship. Neighborhoods with more trees have lower levels of mortality, with a 10 percentage point increase 
in tree cover (about one standard deviation) associated with a reduction in mortality of 11 deaths per 100,000 
people (about one eighth of a standard deviation). This association holds for most major causes of death, and is 
larger for men than for women. Health morbidity is better in areas with more trees, although this relationship is 
not statistically significant. Analysis of sub-samples does not support the critique that our results are merely 
driven by short-term selection effects in which healthier people move to tree-lined suburbs. Using standard 
estimates of the value of a statistical life, the mortality benefit of additional trees substantially exceeds the cost of 
planting and maintenance. Our findings support the protection and restoration of tree canopy in urban neigh
borhoods as a means of promoting public health and reducing health inequalities.   

1. Introduction 

Cities differ dramatically in the extent of their tree canopy cover. 
While some of this variation can be explained by soil quality and cli
matic factors, differences also depend on how planners and policy 
makers prioritize the inclusion and availability of green space to city 
dwellers. Once considered an exclusive amenity for the wealthy, parks 
and open spaces are now recognized as critical infrastructure to be 
accessed by all city dwellers (Zhao et al., 2023). This includes the urban 
tree canopy. 

There are a range of ways that trees may affect cities and their res
idents (Roy, Byrne and Pickering, 2012; Pearlmutter et al., 2017). Trees 
can make a city more beautiful. Their foliage and form can enhance the 

aesthetic value of neighborhoods in ways that provide pleasant spaces 
for recreation. Trees reduce environmental harm by absorbing storm
water, filtering pollutants and sequestering carbon. However, trees can 
also cause harm. They can block sunlight, damage footpaths, and drop 
limbs in storms. In public areas, planting and maintaining trees places 
pressure on stretched government budgets. 

The accessibility of the urban forest can impact the health of com
munities (Wolf et al., 2020). Tree-lined streets can create more enjoy
able places for physical activity that may improve longevity (Knobel 
et al., 2021). By providing shelter from the sun, trees may also amelio
rate the health impact of extreme heat. These characteristics are most 
often found in more affluent communities, epitomized by the phrase 
‘leafy neighborhood’. If trees improve health, then improving tree 
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coverage in disadvantaged areas may also help reduce life expectancy 
gaps across socioeconomic groups (Mitchell et al., 2015). Understanding 
this relationship between foliage and human health therefore has im
mediate implications for policymakers. 

Our study builds on the existing literature by exploring whether 
urban tree canopy is related to neighborhood mortality. We do this by 
analyzing detailed tree data from Australia, an advanced nation with a 
temperate climate that is conducive to outdoor activities. Using new 
data on tree coverage, we precisely estimate the share of a given 
neighborhood that is covered by trees, and then match this to existing 
neighborhood-level data on mortality and socioeconomic characteris
tics. This allows us to regress mortality on tree cover and socioeconomic 
characteristics, which provides an estimate of the neighborhood-level 
association between tree canopy cover and mortality, holding constant 
the socioeconomic mix of the local community. 

The remainder of our paper is structured as follows. In Section 2, we 
outline the theoretical pathways through which tree cover might affect 
population health, and summarize the existing evidence. In Section 3, 
we discuss our data and methodology. Section 4 presents and discusses 
our findings and robustness checks. Section 5 discusses how the 
magnitude of our estimates compares with those in the literature, and 
compares the costs of tree planting to the mortality benefits. The final 
section concludes. 

2. Background 

Multiple studies find a positive association between urban green
space and health outcomes (Hartig, 2021, Markevych, 2017). Exposure 
to greenspaces have been associated with a reduced risk of high blood 
pressure (Tamosiunas et al., 2014), being overweight (Knobel et al., 
2021) or having Type 2 diabetes (Mazumdar et al., 2021) – all risk 
factors linked to cardiovascular disease, the leading cause of mortality 
worldwide (Nowbar et al., 2019). 

The relationship between greenspace and health is not uniformly 
positive. In the case of air pollution, trees have a beneficial impact by 
absorbing pollutants, but may also have a detrimental effect by emitting 
allergenic pollens and reducing the dispersion of car exhaust. A review 
of the literature finds that the relationship between urban vegetation, air 
quality and asthma is inconclusive (Eisenman et al., 2019). However, 
the net effect of greenspace on health appears to be positive. In a meta- 
analysis, Rojas-Rueda et al. (2019) found the risk of all-cause mortality 
was significantly lower with increased exposure to residential 
greenspace. 

Some studies have sought to differentiate between trees and green
space more broadly. Astell-Burt and Feng (2019a) found that tree can
opy was associated with lower rates of diabetes, hypertension and 
cardiovascular disease, while total greenspace was associated with 
lower rates of diabetes only. Similarly, Reid et al. (2017) found signifi
cantly higher rates of self-reported health among those living near high 
tree cover, but no association between self-reported health and grass 
cover. A systematic review reaches a similar conclusion: the relationship 
between tree canopy and health does not appear to hold for grasslands 
and health (Nguyen et al., 2021). 

In a scoping review looking at the relationship between urban trees 
and human health by Wolf et al (2020), the preponderance of evidence 
points to a negative relationship between trees and unhealthy factors 
including excess heat, air pollution, ultraviolet radiation, and crime. 
One of the factors that has been most carefully studied is the urban heat 
island effect, where higher temperatures lead to heat related fatalities, 
particularly in those with cardiovascular disease or respiratory illness 
(Basu, 2009; Brown et al., 2018). Temperatures tend to be lower in areas 
with trees, with a meta-analysis estimating that daytime temperatures in 
urban parks are around 1◦C cooler than in the surrounding streets 
(Bowler et al., 2010). 

Focusing on Australia, a series of recent papers have identified re
lationships between greenspace and mental health (Astell-Burt and Feng 

2019b), cardiovascular health (Astell-Burt et al. 2021), sleep (Astell- 
Burt and Feng 2020a), dementia (Astell-Burt, Navakatikyan and Feng 
2020), memory (Astell-Burt and Feng 2020b), loneliness (Astell-Burt 
et al. 2022) and physical activity (Feng, Toms and Astell-Burt 2021). A 
systematic review finds that most of those studies which disaggregate 
effects by gender have found that greenspace has a stronger protective 
effect for women than men (Sillman et al. 2022). 

Other studies have explored the equity implications the relationship 
between greenspace and health. Studies have shown that low-income 
areas have lower rates of vegetation and higher temperatures, 
exposing residents to a larger mortality burden (Kondo et al., 2020; 
Schwarz et al., 2015). Growing scientific evidence suggests that green
space serves an important preventative health measure within urban 
environments that could also help reduce the health gap between rich 
and poor people (Kondo et al., 2020; Mitchell et al., 2015; Wolch et al., 
2014). 

Although most of the foregoing literature is cross-sectional (Wolf 
et al., 2020), several papers have used experiments or natural experi
ments to measure the relationship between trees and health. A system
atic review of multiple randomized experiments concluded that 
treatment groups who walked in nature (‘forest bathing’) had better 
mental wellbeing than control groups who walked in urban areas 
(Kotera, Richardson and Sheffield, 2022). 

In a natural experiment, Donovan et al. (2013) studied the impact of 
the emerald ash borer, an invasive forest pest that caused the loss of 100 
million trees across the United States. In counties where trees were lost, 
deaths from cardiovascular and lower-respiratory-tract illness rose. Like 
the randomized trials of forest bathing, the natural experiment approach 
addresses one of the potentially confounding factors in this literature: if 
healthier people choose to live in neighborhoods with more trees, then 
the association between tree coverage and health may not reflect the 
causal impact of trees on health. 

Our research builds on this prior literature in three ways. First, we 
present evidence on the most important health outcome: mortality. 
Although we recognize the interest in studying proximate health out
comes (and indeed, our study also looks at obesity and inactivity), 
longevity is of central importance to health researchers. Focusing on 
mortality also makes it possible to use estimates of the value of a sta
tistical life to carry out a cost-benefit analysis of additional tree plant
ings. Second, while some research on tree cover and health has used 
small and potentially unrepresentative samples (such as a single city), 
our analysis uses all available data from Australia, a geographically 
large country whose neighborhoods exhibit considerable variation in 
tree cover. Third, we address the issue of neighborhood sorting through 
a robustness check in which we re-analyze the relationship between tree 
cover and mortality, progressively excluding the areas with the highest 
levels of population mobility. 

3. Methodology 

3.1. Tree coverage data 

Historically, the main limitation on large-scale studies of tree cover 
has been the low resolution of satellite imagery and aerial photography 
(see eg. Smith et al., 2010; Browning and Locke, 2020). Using imagery 
with large pixel sizes (eg. 30 m) makes it difficult to ascertain the true 
extent of tree cover in an area. When coding such imagery, it is difficult 
to distinguish between trees and other features, such as agricultural 
fields, or buildings with green painted roofs. 

After reviewing all available tree datasets in Australia, we opted to 
purchase a proprietary dataset compiled by Geoscape Australia, a pro
vider of national location data. Geoscape tree coverage data is generated 
from a pixel-level analysis of tree coverage derived from satellite im
agery taken in June 2020 (Geoscape, 2020). The Geoscape data was 
chosen in preference to other alternatives such as the National Vegeta
tion Information System dataset due to the high resolution. For example, 
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the Geoscape data has a pixel size of 2 m by 2 m, while National 
Vegetation Information System dataset has a pixel size of 100 m by 100 
m. If the typical urban tree has a canopy of 10 m diameter, it will be 
captured by the Geoscape data, but missed by the National Vegetation 
Information System data unless it is surrounded by other trees. 

The Geoscape source imagery identifies for each pixel whether or not 
tree cover is present. Within each neighborhood, we then count the 
number of pixels with tree cover and divide this by the total number of 
pixels to estimate the percentage of tree cover. To calculate the per
centage tree cover by census area using the Geoscape tree cover dataset 
(version 1.6), we followed these steps, using ESRI ArcGIS Pro and the 
open source QGIS desktop software:  

1. Append all tree cover raster data to a single dataset in GDA2020 GA 
LCC projection.  

2. Convert pixel values to either 1 (trees present in pixel) or 0 (no trees 
present in pixel). The source data also includes tree height per pixel, 
but we do not use this information.  

3. Determine which SA1 areas are fully covered by the Geoscape tree 
data.  

4. Analyze tree cover data for SA1 areas which are fully covered by the 
Geoscape tree data.  

5. Calculate percentage tree cover for each SA1 area as the sum of pixel 
values with tree cover divided by the total number of pixels. 

To follow these steps in the two software programs requires the 
graphical interface, rather than code. Screenshots of the relevant 
graphical interface choices are available to anyone having difficulty in 
replicating our work based on the description above. 

Fig. 1 provides a sample of the data, depicting tree canopy coverage 
in Australia’s four most populous cities: Sydney, Melbourne, Brisbane 
and Perth. 

Fig. 1. Tree Canopy Coverage in Four Australian Cities. Note: Boundaries are at the Australian Bureau of Statistics Statistical Area 3 level. Legend shows tree cover 
range (eg. ‘0.26,0.45′ denotes tree cover ranging from 26 percent to 45 percent). 
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Our tree cover data are based on imagery that focuses on urban areas 
with a population of 200 or more people. The tree cover dataset covers 
less than 1 percent of the total land area of Australia (we estimate the 
total Geoscape tree data dataset coverage as 51,109 km2, and the Geo
scape tree data coverage of areas fully within an SA1 boundary as 
22,739 km2, while according to the website of Geoscience Australia, the 
total land area of Australia including islands is 7,688,287 km2). How
ever, the dataset provides us with accurate tree coverage for 90 percent 
of the Australian population (based on the 2016 Census, 20,964,733 
people were in an SA1 area for which we were able to calculate tree 
coverage using the Geoscape dataset, out of a total of 23,401,461 people 
covered by the 2016 Census and assigned to an SA1 area). 

For the purposes of our analysis, we aggregate tree canopy coverage 
data to the same level as the available mortality and morbidity statistics. 
For mortality statistics, data are only available at an SA3 level, so we 
aggregate tree coverage to that level, averaging across SA1s on a 
population-weighted basis. For morbidity statistics, data are only 
available at a PHN level, so we aggregate tree coverage to that level, 
averaging across SA1s on a population-weighted basis. 

Those areas for which we do not have tree coverage data tend to have 
lower rents, lower incomes, lower levels of education, lower shares of 
people who do not speak English at home, and higher shares of Indig
enous people. This is consistent with these omitted areas being more 
disadvantaged, remote communities. 

Our data correlate closely with other studies of tree coverage. For 
example, the Australian Capital Territory Government used LiDAR 
remote sensing to estimate urban tree canopy cover at a suburb level 
(ACT Government, 2021). To compare our data against this source, we 
aggregated our tree coverage estimates to a suburb level. Across 94 ACT 
suburbs for which tree cover estimates exist in both datasets, the average 
tree cover is higher in the ACT Government data (25 percent) than in our 
dataset (14 percent). However, the two datasets closely correspond in 
terms of which suburbs have more tree coverage. Across suburbs, the 
correlation between the ACT government’s estimates and ours is 0.9. 
This provides us with some reassurance as to the accuracy of our tree 
coverage estimates. 

3.2. Health data and socioeconomic controls 

The main health measures we use are mortality figures from the 
Mortality Over Regions and Time (MORT) books. These aggregate 
deaths over a five-year period, 2015–2019, and at the geographic level 
of a Statistical Area 3 (SA3). SA3 units are an aggregate of SA1 units, and 
generally have a population of between 30,000 and 130,000 people. In 
major cities, SA3 areas represent the areas served by a major commercial 
or transport hub. In regional areas, SA3s cover the areas served by 
regional cities with a population of 20,000 or more, often aligning to 
Local Government Areas. The MORT books cover the full universe of 
deaths, and are based on the Cause of Death Unit Record File data, 
maintained by the Australian Institute of Health and Welfare (AIHW) in 
the National Mortality Database. 

Mortality figures are represented as annual deaths per 100,000 
people. Naturally, areas with a higher average age tend to have higher 
mortality rates, so all mortality figures are adjusted to account for the 
age structure in the local area (Kleinman 1977). In effect, this converts 
the local area mortality rate to what it would be if its age structure 
matched that of the full Australian population at a common point in time 
(by convention, the Australian Bureau of Statistics uses the national age 
structure in 2001). Where mi is the mortality rate for age group i and Wi 
is that age group’s population share in 2001, the age-adjusted mortality 
rate is equal to 

∑
miWi/

∑
Wi. In addition to all-cause mortality, we 

present age-adjusted mortality rates from some of the most common 
causes of death, including cancer, heart conditions, kidney failure and 
suicide. 

For the purposes of our analysis, it is necessary to make some minor 
adjustments to the causes of death dataset. The MORT books show, for 

each SA3 region, the number of deaths that occurred in the period 
2015–2019. Figures are presented for each of the top 20 causes of death 
on a national level. Where a cause of death is one of the top 20 causes for 
a particular SA3, the AIHW data shows the age-adjusted mortality rate. 
For example, the age-adjusted rate of death for coronary heart disease is 
shown for every SA3, since it is always one of the top 20 causes of death 
in each region. However, where a cause of death is not one of the top 20 
causes of death in a region, the AIHW dataset shows the number of 
deaths, but not the age-adjusted rate. For example, we know the number 
of deaths due to accidental falls in all SA3 areas, but in some cases the 
AIHW does not report the age-adjusted rate of death due to accidental 
falls. 

To account for this, we therefore estimate the mean age-adjusted 
population denominator for all reported deaths (we calculate this 
figure for each SA3 and cause of death, and then average it across the 
SA3, weighting by the number of deaths in each cause). We use this age- 
adjusted population denominator to estimate the age-adjusted death 
rate where it is not reported. Note that this will necessarily be imprecise, 
since the age profile differs across causes of death. However, the 
advantage of this approach is that it allows us to compare causes of 
death across all SA3 areas, without needing to contend with issues of 
sample selection. In general, our results are not particularly sensitive to 
excluding cases where we cannot precisely calculate the age-adjusted 
mortality rate for particular causes of death. There are a handful of 
SA3 areas for which the AIHW data report all-cause mortality for per
sons, but do not provide a breakdown by gender or cause of death. Since 
these are a tiny fraction of the total sample, we drop them in the interests 
of comparability. 

For ease of exposition, we do not present results for the top 20 causes 
of death. Instead, we aggregate mortality statistics, following the In
ternational Statistical Classification of Diseases and Related Health 
Problems 10th revision (ICD-10). We create a category of major cancers, 
which is the sum of deaths due to Lung cancer (C33, C34), Colorectal 
cancer (C18–C20, C26.0), Prostate cancer (C61), Breast cancer (C50), 
Pancreatic cancer (C25), Cancer of unknown or ill-defined primary site 
(C26, C39, C76–C80 excl. C26.0), and Liver cancer (C22), which are all 
classified as ‘Neoplasms’, ICD-10 codes C00-D48. We also create a 
category of heart conditions, which is the sum of deaths due to Coronary 
heart disease (I20–I25), Cerebrovascular disease (I60–I69), Heart failure 
and complications and ill-defined heart disease (I50–I51), Cardiac ar
rhythmias (I47–I49), and Hypertensive disease (I10–I15), which are all 
classified as ‘Diseases of the circulatory system’, ICD-10 codes I00-I99. 
This reduces the 20 top causes of death in Australia to 10 major causes. 

To shed further light on our mortality results, we explore how tree 
cover relates to three health measures: overweight, exercise and blood 
pressure. To this end, we use data collected in the 2017–18 National 
Health Survey, a survey conducted by the Australian Bureau of Statistics 
covering approximately 21,300 people in 16,400 private dwellings 
across Australia. Although the National Health Survey excludes Very 
Remote areas of Australia and discrete Aboriginal and Torres Strait 
Islander communities, this makes little difference to our analysis, since 
our tree data covers urban areas. National Health Survey data are 
available only at the level of the Primary Health Network (PHN). PHNs 
connect health services across a specific geographic area, as defined by 
the Australian Government Department of Health. There are 31 PHNs, 
covering the entirety of Australia. 

Unlike tree cover data and mortality data, measures from the Na
tional Health Survey are affected by sampling error. The specific mea
sures we use are:  

• The proportion of adults with high blood pressure. High blood 
pressure is defined as the share of people with a systolic reading of 
140 or higher and/or a diastolic reading of 90 or above, plus people 
who reported they were taking hypertension medication (regardless 
of their blood pressure reading). 
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• The share of people who are overweight or obese. Overweight is 
defined as a body mass index of 25 or above, while obesity is defined 
as a body mass index of 30 or above.  

• The percentage of people who do not meet the recommended 
physical activity guidelines. Respondents aged 18 to 64 met the 
physical activity guidelines if they completed 150 min of physical 
activity (where vigorous activity is multiplied by 2) on 5 days or 
more in the prior week. Respondents aged 65 over met the guidelines 
if they completed 30 min or more of physical activity on at least 5 
days in the last week. Physical activity includes exercise at work, 
walking for fitness, recreation, or sport; walking to get to or from 
places; moderate exercise; and vigorous exercise recorded in the 
week prior to interview. 

As with mortality data, each of these health measures is age- 
standardized to the Australian population. These are all risk factors, so 
the interpretation of their coefficients is the same as that for mortality, 
with negative coefficients representing lower risk levels (and therefore 
better population health). 

What controls should be included? Ideally, our regression specifi
cation should hold constant baseline socioeconomic differences. By 
doing so, we are effectively comparing health outcomes in areas with 
similar levels of affluence, racial diversity and education. These socio
economic variables are not pathways through which greenspace affects 
health, and they may confound the relationship between tree cover and 
health if they are correlated with both metrics. For example, if richer 
areas have more trees and better health, then failing to include a control 
for affluence could lead to us mistakenly concluding that trees affect 
health, when in fact both are driven by affluence. 

However, we deliberately do not include control variables that may 
capture the pathways through which trees could affect health. As 
Wooldridge (2013, 205-206) points out, including additional variables 
in an attempt to maximize the goodness-of-fit (R2) can lead to the 
problem of overcontrolling. Overcontrolling occurs when the researcher 
controls for the mechanisms through which the key independent vari
able affects the dependent variable. For example, if trees improve the air 
quality, noise levels or temperature in local neighborhoods, then con
trolling for these variables would capture part of the causal effect of 
trees on health. Mistakenly including an air quality, noise level or 
temperature control would then us to underestimate the true impact of 
trees on health. The same is true of controlling for health behaviors. For 
example, if trees cause people spend more time outdoors or with friends, 
then controlling for outdoor time or socializing would lead us to un
derestimate the true impact of trees on health. Admittedly, data con
straints make this a hypothetical point in some cases. Since our analysis 
requires finely disaggregated geographic data across Australia, detailed 
data on some of these metrics would not be available, even if we wished 
to include them. 

Our socioeconomic controls are drawn from the 2016 Census, which 
provides precise neighborhood-level measures across the nation. We 
include five socioeconomic controls: median rent, median household 
income, the share of the population who have a year 12 education, the 
share of the population who are Indigenous, and the share of the pop
ulation who speak a language other than English at home. We include 
rent as a proxy for housing wealth, since the Census does not include 
home values, and rent is more closely related to housing values than 
average mortgage repayments (which vary significantly with the timing 
of house purchase). In our analysis (though not in the summary statistics 
table) the rent and income variables are logged, reflecting the fact that 
we expect health to be affected by a given percentage change in rents 
and incomes, not a given dollar change. The other variables are shares, 
which range from zero to one. Table 1 presents population-weighted 
summary statistics. 

Note: All summary statistics are population-weighted. 

3.3. Regression specification 

Our regression specifications take the form: 

Hj = αTj + βXj + εj (1)  

where H is a health outcome in geographic area j, T is the share of that 
area covered in trees, X represents a vector of socioeconomic controls, ε 
is a normally distributed error term, and α and β are coefficients. 

Since mortality only varies at the SA3 level, we average tree coverage 
and socioeconomic controls to that level. Likewise, because morbidity 
only varies at the PHN level, we average tree coverage and socioeco
nomic controls to that level. Results are qualitatively similar if we run 
the regressions at the SA1 level but cluster our standard errors at the SA3 
level (as per Abadie et al. 2023). All regressions are population 
weighted. 

4. Results 

4.1. Graphing simple bivariate relationships 

Before presenting regression results, it is useful to observe the simple 
bivariate relationships between tree cover, affluence and mortality. We 
begin in Figs. 2 and 3 by plotting average tree cover against median 
weekly rent and median weekly household income, with each dot rep
resenting a local neighborhood. In each chart, we show the line of best 
fit, weighted by the population in each neighborhood. 

In both figures, there is an upwards slope. Areas with weekly rent 
around A$300 had on average about 10 percent tree cover, while areas 
with weekly rent around A$500 had approximately 40 percent tree 
cover. Likewise, areas with weekly household income around A$1500 
had on average about 10 percent tree cover, while areas with weekly 
incomes around A$2000 had approximately 40 percent tree cover. 

In Fig. 4, we plot the bivariate relationship between mortality and 
tree cover, showing on the vertical axis the number of deaths for every 
100,000 people. We observe a strong negative relationship between 
mortality and tree cover, with the number of age-adjusted deaths 
averaging around 500 per 100,000 people in areas with 10 percent tree 
cover, but falling to almost 400 in areas with over 40 percent tree cover. 

In Fig. 5, we show the bivariate association between overweight and 
tree cover. Since we only observe overweight data at a PHN level, we 
average tree cover to that level. At this higher level of aggregation, the 

Table 1 
Summary Statistics.   

Mean Standard deviation 

Tree cover  0.139  0.082 
Mortality per 100,000 people 
All deaths  539.393  90.128 
Cancer  96.195  16.687 
Heart conditions  117.022  22.415 
Dementia  40.919  13.545 
Chronic obstructive pulmonary disease  25.03  10.347 
Diabetes  16.677  8.706 
Influenza/Pneumonia  10.739  3.925 
Kidney failure  6.847  2.763 
Liver disease  7.102  3.058 
Suicide  13.542  4.996 
Accidental falls  8.616  3.712 
Morbidity measures 
High blood pressure  0.318  0.032 
Overweight or obese  0.671  0.045 
Did not meet physical activity guidelines  0.543  0.049 
Socioeconomic controls 
Median weekly rent ($A)  353.853  105.803 
Median household income ($A)  1553.459  424.85 
Share who have completed high school  0.407  0.123 
Share Indigenous  0.034  0.047 
Share speaking a language other than English  0.173  0.155  
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range of tree cover falls, with the highest rate being 29 percent. We 
observe that in areas with 10 percent tree cover, age-adjusted rates of 
overweight and obesity average around 70 percent, while in areas with 
20 percent tree cover, overweight and obesity averages around 65 
percent. 

It is difficult, however, to discern from these scatterplots the extent to 
which the positive relationship between health and tree cover is merely 
an artefact of the positive relationship between affluence and tree cover. 
To discern this, it is necessary to regress health outcomes on tree cover, 
holding constant measures of socioeconomic status. 

4.2. Mortality regression results 

Table 2 shows regression results for mortality, beginning with all- 
cause mortality, and then analyzing particular causes of death. 

Controlling for socioeconomic status, the coefficient on all deaths is 
− 110, which is statistically significant at the 5 percent level. This im
plies that a 10 percentage point increase in tree cover (approximately 
one standard deviation) reduces the annual mortality rate by 11 deaths 
per 100,000 people. Across ten causes of death, the coefficients are 
negative and statistically significant at the 1 percent level for influenza/ 
pneumonia, kidney failure, liver disease, and accidental falls; at the 5 
percent level for suicide, and at the 10 percent level for diabetes. It is 
worth noting that these six causes of death include both communicable 
and non-communicable conditions. 

The other control variables in Table 2 largely take the expected sign. 
As Figs. 2 and 3 show, both rent and income are negatively related to 
overall mortality, but the relationship is stronger for rent than income. 
When both are included in the regression, the coefficient on rent remains 
negative and significant, while the coefficient on income is negative but 

Fig. 2. Median Rent and Tree Cover.  

Fig. 3. Median Income and Tree Cover.  
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statistically insignificant. In the overall deaths specification, the log rent 
coefficient is − 61, indicating that a 10 percent increase in rent prices is 
associated with 6 fewer deaths per 100,000 people. 

Reflecting the established association between education and health, 
the schooling coefficient of − 171 suggests that a 10 percentage point 
increase in the share of people who have completed high school is 
associated with 17 fewer deaths per 100,000 people. Education is 
negatively related to most of the specific causes of death. 

The Indigenous coefficient is 782, suggesting that a neighborhood 
with only Indigenous people would have a death rate that was 782 
deaths per 100,000 higher than a neighborhood with no Indigenous 
people. This is more than three times larger than the racial Indigenous 
gap (212 deaths per 100,000: AIHW 2020), indicating that in areas with 
a larger share of Indigenous people, non-Indigenous residents also have 
higher rates of mortality. The Indigenous share is positively related to 
mortality across specific causes of death (except accidental falls), and is 
statistically significant in most instances. 

The share of people in an area who speak a language other than 

English at home does not have a consistent relationship with mortality, 
either for all-cause mortality or for particular causes of death. Finally, 
the R2 indicates that our model explains around 62 percent of variation 
in overall mortality across areas. In regressions where the dependent 
variable is a specific cause of death, the R2 is lower. Taken together, tree 
cover and socioeconomic status are strongly predictive of cancer, 
chronic obstructive pulmonary disease, diabetes and suicide, but explain 
little of the regional variation in dementia and influenza/pneumonia. 

4.3. Mortality effects by sex 

Since neighborhood-level mortality statistics are available by sex, we 
run the analysis separately for male mortality and female mortality, 
reporting the results in Table 3. We find that tree cover has seven times 
as large an impact on reducing male mortality as on reducing female 
mortality. The coefficients are –209 for men and –30 for women, 
implying that a 10 percentage point increase in tree cover reduces the 
annual mortality rate by 21 men per 100,000, but only by 3 women per 

Fig. 4. Mortality and Tree Cover.  

Fig. 5. Overweight and Tree Cover.  
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100,000. A Chi2 test shows that the relationship between tree cover and 
mortality differs significantly between men and women. 

Our finding that the health benefits of greenspace are greater for men 
contrasts with the bulk of the literature, which has tended to find that 
the benefits are greater for women (Sillman et al., 2022). The available 
data do not allow us to investigate the causal pathways more thor
oughly, but we can speculate on possible explanations. Safety concerns 
have been identified as a barrier in promoting access and use of urban 
greenspace by women, reducing their likelihood to walk in local 
neighborhoods compared to men (Ward Thompson et al., 2005). This 
may help explain why additional tree canopy would benefit men 
significantly more, as concerns around safety would make women more 
reluctant to access urban open space regardless of canopy density and 
extent. Further study around the relationship of greenspace and 
women’s health is warranted, particularly if women are to experience 
the full benefits of increased tree planting programs in urban areas. 

4.4. Morbidity regression results 

Table 4 analyses three morbidity metrics, drawn from the National 
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Table 3 
Tree Cover and Mortality by Sex.   

Men Women 

Tree cover − 209.480*** − 29.740  
(58.639) (44.977) 

Log rent − 29.604 − 87.616***  
(23.075) (17.699) 

Log household income − 80.810*** 25.209  
(23.012) (17.651) 

Share who have completed high school − 165.384*** − 151.067***  
(59.797) (45.865) 

Share Indigenous 926.347*** 637.842***  
(107.477) (82.436) 

Share speaking a language other than English − 16.701 35.769  
(35.225) (27.018) 

R squared 0.579 0.537 
Sample size 328 328 
Test for equality of tree cover coefficients across 

male and female specifications 
χ2(1 DF) = 18.91 

(P < 0.001) 

Note: ***, ** and * denote statistical significance at the 1 %, 5 % and 10 % levels 
respectively. Standard errors in parentheses. All regressions are population- 
weighted. 

Table 4 
Tree Cover and Morbidity.  

Dependent Variable: High blood 
pressure 

Overweight or 
obese 

Did not meet 
physical activity 

guidelines 

Tree cover − 0.290 − 0.080 − 0.311  
(0.221) (0.227) (0.408) 

Log rent − 0.010 − 0.110 0.102  
(0.078) (0.080) (0.143) 

Log household income − 0.119 − 0.030 − 0.129  
(0.101) (0.104) (0.187) 

Share who have 
completed high 
school 

0.224 − 0.054 − 0.056  

(0.228) (0.233) (0.420) 
Share Indigenous 0.184 − 0.120 0.371  

(0.269) (0.276) (0.497) 
Share speaking a 

language other than 
English 

− 0.040 0.018 0.086  

(0.091) (0.093) (0.167) 
R squared 0.349 0.588 0.110 
Sample size 31 31 31 

Note: ***, ** and * denote statistical significance at the 1 %, 5 % and 10 % levels 
respectively. Standard errors in parentheses. All regressions are population- 
weighted. 
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Health Survey. High blood pressure, overweight and failing to meet 
exercise guidelines are all negatively related to tree cover, but not sta
tistically significant at conventional levels. The coefficients suggests that 
a 10 percentage point increase in tree cover is associated with a 2.9 
percent drop in the share with high blood pressure, a 0.8 percent fall in 
the share of people who are overweight or obese, and a 3.1 percent fall in 
the share of people who fail to meet exercise guidelines. 

The other controls in the morbidity regressions largely follow the 
pattern of the mortality regressions reported in Table 2, but are not 
statistically significant at conventional levels. This likely reflects the 
high levels of aggregation in the morbidity analysis, which is done at a 
Primary Health Network level (of which there are only 31 in Australia) 
rather than at an SA3 level (of which there are over 300 in Australia). 
Together, tree cover and our socioeconomic measures explain 35 
percent of the area-level variation in high blood pressure, 59 percent of 
the variation in obesity, and 11 percent of the variation in physical 
activity. 

4.5. Specification checks 

Neighborhood-level analysis is inherently necessary when consid
ering tree cover, since the theoretical pathways through which urban 
trees affect human health – which fall into the categories of reducing 
harm, restoring capacity and building capabilities (Markevych et al., 
2017) – all posit that it is the trees in a person’s neighborhood that 
matter, not just the trees in their own backyard. Therefore, even if it 
were technically possible to obtain household-level data on mortality 
and morbidity, it would not be desirable to regress this on the tree cover 
in that person’s backyard. When considering factors such as neighbor
hood walkability, our interpretation of the literature suggests that tree 
coverage in an area covering one’s nearest 400 neighbors is likely to 
correspond to the local area that matters most to a person’s health. 

Another concern is that the impacts of urban trees on health will 
occur with some delay. Conditions such as diabetes, cancer and obesity 
typically take years to manifest. To the extent that population mobility is 
uncorrelated with health or tree coverage, migration between regions 
with different levels of tree cover will attenuate our estimated effects. To 
get some sense of the potential magnitude of this attenuation bias, the 
share of Australians who make a long-distance move is around 3 percent 
per year (Productivity Commission 2014, 104). This potential attenua
tion should be borne in mind when interpreting our results. For example, 
it is possible that our failure to find a significant negative relationship 
between tree coverage and dementia contrasts with Astell-Burt, Nav
akatikyan and Feng (2020) (who do find such a negative relationship) 
because their study uses longitudinal data spanning an 11-year period, 
while ours uses cross-sectional data. 

A further consideration is whether our results are driven by spatial 
autocorrelation. To test this, we apply a Moran test for spatial depen
dence to the main specification (the first result shown in Table 2). This 
test is unable to reject the hypothesis that the error terms are indepen
dent and identically distributed. We therefore estimated a spatial 
autoregressive model, which shows that the relationship between tree 
cover and mortality is large and negative, as in the results of Table 2. 
Because spatial autoregressive models do not accommodate weighting 
(and therefore place the same weight on areas with low and high pop
ulations), our preferred estimate remains that from the linear model. 

An additional potential concern is that our results reflect sorting. For 
argument’s sake, suppose that trees have zero impact on health, but 
people who are already healthy (for lifestyle or genetic reasons) prefer to 
live in neighborhoods with more trees. If healthier homebuyers are 
willing to pay more for homes in leafy suburbs, then we will observe a 
positive relationship between health and tree cover, even if no causal 
effect exists. 

To the extent that selection effects are driving our results, they 
should lead the relationship between mortality and tree cover to be 
largest in the areas with the highest level of mobility, since these will be 

the areas where healthy people are moving into tree-lined suburbs. To 
test this, we identified for every neighborhood the share of the popu
lation who did not live in the same house five years ago. We then rank all 
neighborhoods according to the level of mobility, and re-run the first 
regression specification shown in Table 2 (with the dependent variable 
being all-cause mortality). We do this 81 times, each time dropping 1 
percent of the sample until we are left with only the 20 percent of the 
sample with the lowest level of mobility. 

The results of this exercise are shown in Fig. 6. The line shows the 
coefficient on tree cover, and the shaded area depicts the 95 percent 
confidence interval. With 100 percent of the sample, the coefficient on 
tree cover is –110, corresponding to the first specification shown in 
Table 2. When the sample is restricted to the least mobile 75 percent of 
the areas, the coefficient on tree cover is –98. With the least mobile 50 
percent, the coefficient on tree cover is –87. As we move to the least 
mobile 25 percent, the coefficient grows in magnitude to –122. Natu
rally, the standard error increases as the sample shrinks (as reflected by 
the widening of the shaded bars as we move to the right). 

While the results of this exercise are not conclusive, they do provide 
suggestive evidence that our results are not driven by selective mobility. 
The line in Fig. 6 does not show a marked trend upwards or downwards, 
suggesting that restricting the sample to less mobile neighborhoods does 
not tangibly affect the relationship between tree cover and mortality. 

5. Discussion 

How do our results compare with estimates in the literature? Rojas- 
Rueda et al. (2019) use the Normalized Difference Vegetation Index 
(NDVI), a measure of vegetation density based on the difference be
tween visible red and near-infrared surface reflectance in Land Remote- 
Sensing Satellite (Landsat) imagery. To convert NDVI to urban tree 
canopy (UTC), we use a formula set out in Kondo et al. (2020), which is 
that NDVI = -0.03 + (0.51 × UTC0.5). At our mean value of tree cover of 
13.9 percent, a 10 percentage point increase in tree cover is equivalent 
to a 0.06 increase in the NDVI. Our estimates suggest that a 0.06 increase 
in NDVI would result in a mortality hazard rate of 0.980 [(539–11.0)/ 
539], and that a 0.1 increase in the NDVI results in a mortality hazard 
rate of 0.966. By comparison, the nine studies summarized in Rojas- 
Rueda et al. (2019) estimate a mean pooled mortality hazard ratio of 
0.96 from a 0.1 increase in NDVI, with a 95 percent confidence interval 
of 0.94 to 0.97. Thus our point estimate is quite close to the average of 
the nine studies on greenspace and mortality summarized by Rojas- 
Rueda et al. (2019). Note however that this is an imprecise comparison, 
since the NDVI-to-UTC formula was not derived from Australian data, 
and our comparison is with studies in a range of different international 
contexts. 

How should we think about the magnitudes in our study? Our central 
result is that a 1 percentage point increase in tree cover reduces mor
tality by 1.10 deaths per 100,000 people. Recall that in total, our 
analysis covers 21 million people and an area of 20,000 square kilo
meters. A 1 percentage point increase in tree cover would therefore 
require an additional 200 square kilometers of trees, and would be 
associated with around 230 fewer deaths. 

One way to compare these figures is to carry out a cost-benefit 
analysis. The cost of urban tree planting varies considerably, but one 
estimate places the cost at between A$50 and A$100 per tree per year 
(Moore 2021). If we assume that the typical urban tree has a canopy that 
is 10 m in diameter, then 2.5 million trees have a combined canopy of 
200 square kilometers (the number of trees is calculated as (200 ×
1,000,000)/(π × 52)). This implies an annual cost of A$125 million to A 
$250 million to increase tree canopy by 200 square kilometers. 

To convert the mortality estimate to monetary terms, we use the 
Australian Government’s estimate for the value of a statistical life, 
which is A$5 million (Department of Prime Minister and Cabinet 2021). 
Multiplying this figure by 230 lives per year, this suggests an annual 
benefit of A$1.15 billion, which is more than four times larger than our 
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upper estimate of the annual cost of planting and maintaining an addi
tional 200 square kilometers of tree canopy. Note that our findings 
consider only mortality, and do not take account of the fact that trees 
also have positive benefits as carbon sinks, as well as improving the 
quality of life of residents. Therefore, another way of regarding our 
result is that it provides a preventive health lens to urban greening 
strategies: if urban tree planting can be carried out at a reasonable cost, 
it may be justified solely terms of the benefits of reduced mortality. 

These results also show the potential risk of urban development that 
replaces trees with buildings. To the extent that urban infill reduces total 
tree coverage, it may adversely affect population health. From a health 
perspective, a development that increases the residential density of an 
existing block should be preferred to a development that converts a tree- 
filled public park into an apartment complex. 

Our findings also have equity implications. As Figs. 2 and 3 show, 
tree cover is more prevalent in affluent neighborhoods. Given the health 
benefits outlined above, establishing more equitable tree cover targets 
within urban areas could help reduce the health gap between rich and 
poor people. A tree planting program could in principle be focused on 
neighborhoods with low tree canopy and high levels of chronic disease. 

Using only aerial geospatial data to calculate canopy density does 
present limitations. Since our data cover only 90 percent of the 
Australian population, it is not perfectly nationally representative. 
Another limitation is that we do not have data on the types of trees in a 
neighborhood. Being able to distinguish tree species would allow us to 
investigate whether different types of trees produce different health 
effects. More detailed data would also allow us to contrast the health 
benefits provided by tree canopy against the health impacts of other 
vegetation types such as grass and understory. In future research, street- 
level images could complement aerial imagery and provide a more 
precise understanding of which types of greenspace have the greatest 
impact on population health. 

6. Conclusion 

Analyzing high-quality tree cover data for Australia, we find a strong 
association between the percentage of tree cover and the health of a 

neighborhood, holding constant several socio-economic variables. This 
relationship is strongest for mortality, with clear evidence that neigh
borhoods with more trees have fewer deaths. 

Focusing on specific causes of death, we find a significant negative 
association between mortality and tree cover for six out of ten broad 
causes of death: influenza/pneumonia, kidney failure, liver disease, 
accidental falls (all at the 1 percent level), suicide (at the 5 percent 
level), and diabetes (at the 10 percent level). This is consistent with prior 
Australian studies showing that greenspace is associated with better 
physical and mental health outcomes (eg. Astell-Burt and Feng, 2019b; 
Astell-Burt et al., 2021; Astell-Burt and Feng, 2020a; Astell-Burt, Nav
akatikyan and Feng, 2020). 

Contrary to much of the literature (as reviewed in Sillman et al., 
2022), we find that the relationship between tree cover and mortality is 
substantially larger for men than for women. Using data from the Na
tional Health Survey, we also observe suggestive (but not statistically 
significant) evidence of a negative association between measures of 
morbidity and tree cover. 

As a way of testing whether our findings might be driven by sample 
selection, we re-analyze the data on neighborhoods where a lower share 
of people have moved house in the previous five years. Our mortality 
findings do not weaken when we restrict the sample to the neighbor
hoods with the least population mobility, suggesting that the results may 
not be driven entirely by sample selection. 

Traditional economic approaches to planning and development 
sometimes neglect to quantify the benefits of urban forest on city 
livability. Our findings suggest that trees are associated with lower rates 
of mortality. We also uncover key disparities, with trees tending to be 
concentrated in advantaged areas, and the association between urban 
tree cover and health being larger for men than for women. These 
findings suggest the planning and management of the urban forest can 
be one way to promote public health and reduce health inequalities. 
Cities of the future should ensure all residents can harness the health 
benefits of seeing the urban forest and its street trees. 

Fig. 6. Re-Estimating Mortality Regression in Areas with Progressively Lower Mobility.  
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